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ABSTRACT  

Objective/Hypothesis: Little research has explored the potential of computer assisted decision 

making applied to high-speed videoendoscopy. In this paper, we propose a computer based 

method for differentiating normal and pathological larynges on the basis of HSV.  

Methods: HSV recordings were collected from 101 patients with normal larynges, leukoplakia, 

nodules or polyps. After pre-processing, samples were analyzed for the number of glottal regions 

present during the open phase, the symmetry of the glottal area, the convex nature of the vocal 

folds and the ratio of the minimal to maximal glottal area. A decision tree based method with 

support vector machines at the tree nodes was used to separate samples. 

Results: Normal samples were differentiated from pathological samples with a sensitivity of 

91.1% and a specificity of 81.8%. When samples were divided into normal, nodule, polyp and 

leukoplakia groups, samples were correctly separated 70.3% of the time. 

Conclusions: The combination of SVM and decision tree improves the differentiating 

capabilities of the parameters employed. While our approach was successful in separating 

normal from abnormal samples, the classification of unique pathologies requires the 

development stronger individual parameters. 

Keywords: High-speed videoendoscopy; Decision Tree, Support Vector Machine, Polyp, Nodule, 

Leukoplakia 
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I. INTRODUCTION 

The diagnosis of laryngeal pathologies remains a complex and highly subjective process. 

The development of an automatic analysis programs to act as support systems during diagnosis 

could prove extremely useful, particularly for less experienced clinicians. Most commonly 

diagnosis of laryngeal diseases is based on visualization of the larynx, allowing the physician to 

evaluate the color, shape, geometry and smoothness of the vocal folds.1 Stroboscopy generates a 

simulated slow motion video feedback; however, it cannot be used with aperiodic vocal fold 

vibrations.
2-4

 High-speed videoendoscopy (HSV) overcomes this limitation by providing a frame 

by frame visualization of the glottal cycle that is not disrupted by aperiodicities.
5
 Furthermore, 

HSV images are approaching the same quality as those generated by stroboscopy.
2
  

Computer aided classification of laryngeal images has been a topic of recent interest. In a 

2003 study, Ilgner et al. differentiated normal from diseased with 81.4% accuracy based on color 

texture.
6
 Verikas and his team classified laryngeal images into normal, nodular pathology and 

diffuse pathology groups, using parameters based on laryngeal color, texture and geometry. In 

three separate studies Verikas and his team classified samples with 87%, 92% and 94% 

accuracy.
1,7,8

 Despite considerable success in developing computer systems applied to still 

images, no study has applied this technology to HSV data. Physicians choosing to use HSV need 

a program to organize the ample information generated during a single recoding.2 Additionally, 

automated systems could provide assistance during the highly subjective process of diagnosing 

laryngeal diseases.  

In analyzing parameters collected from laryngeal visualization techniques, support vector 

machines (SVMs) are becoming increasingly popular. SVMs determine a separation hyperplane 

that achieves the largest margin of separation between two groups.
9,10

 Although SVM is a 

powerful tool for differentiating groups, its application becomes time consuming and its success 

is reduced when sample groups become large or complexly distributed.
9
 Additionally, SVM only 

differentiates between two groups, making it inadequate for classifying individual pathologies. 

Combining SVM with a decision tree overcomes this limitation.
10,11

 

In this paper we present an automated method for classifying laryngeal pathologies using 

HSV. By calculating geometric and textural features previously determined to be important in 

differentiating larynges and adding the temporal features that may also be defined from a HSV 

recording,
1,7,8,12

 we differentiated normal larynges from those displaying nodules, polyps or 

leukoplakias. After collection, videos underwent initial processing: smooth filtering, threshold 

histogram, noise filtering and glottal area detection. Next parameters concerned with the 

concavity, symmetry, number of glottal regions and the ratio of minimal to maximal glottal areas 

were computed. Finally, samples were classified using a decision tree based on support vector 

machines.  

 

II. METHODS AND MATERIALS   
Sample Collection. The following experiment is based on HSV recordings from 101 

subjects, collected between January 2007 and January 2008 at the Ear, Eye, Nose and Throat 

Hospital of Fudan University. Samples were obtained in accordance with the ethics committee of 

Fudan University. After examination by an attending physician, subjects were classified as 

displaying nodules (21), polyps (37), leukoplakias (21) or normal larynges (22). Summary 

statistics are shown in table 1. For HSV recordings, subjects were asked to phonate the vowel /a/ 

at a conformable pitch. Images were recorded with a digital high-speed camera (Kay Elemetrics, 
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Lincoln Park, NJ) with a sampling rate of 2000 frames/second and a resolution of 128 x 256 

pixels.  

Preprocessing. The preprocessing routine focused primarily on video smoothing and 

video size reduction. In order to remove error, a smoothing filter took a weighted average of the 

brightness of each pixel. The intensity of each pixel was averaged with the intensities of the 

pixels to the right and left of it: 
Im ( 1) 2 * Im ( ) Im ( 1)

Im ( )  
4

i i i
i

− + + +
=  

Im represents each frame, while i is the column number in each frame. Im(i-1) is the 

column to the left of i, and Im(i+1) is the column to the right of column i.
4
 In order to produce 

results within the boundary of the image, the value of i is between two and the total number of 

columns minus one. After processing the raw videos, a representative frame was manually 

cropped into a more explicit view of the glottal area. This cropping was applied to all frames of 

the video reducing the non-glottal area and increasing computing accuracy. 

Image Segmentation. After the preprocessing phase a threshold was selected to isolate 

the glottal area. The threshold was determined using a computer generated histogram comprised 

of two normally distributed peaks representing the object intensities and the background 

intensities, with a valley containing intermediate gray levels. The threshold was selected as the 

lowest point within the valley, creating a binary image separating the object from the 

background.
4
 Sometimes due to light reflection on the surface of the vocal folds, object regions 

are misclassified as background. By inputting a minimum value, the program can scan through 

the image and erase regions with a total number of pixels below the set minimum. After setting a 

threshold and eliminating reflective noise, an image of the glottis and threshold during the open 

phase was saved for further analysis (Figure 1). 

 

Figure 1: Glottal image and threshold image 

generated from a subject with vocal fold 

polyps before selecting a minimum pixel 

value. The glottal image is cropped to isolate 

the glottal opening. Laryngeal tissue appears 

black in the threshold image while the glottal 

opening is white. Additional areas of white 

indicate reflective interference. The lower 

panel is the version after applying a minimum 

value. 

Temporal Feature Calculation. Using the binary threshold image, the glottal area can be easily 

identified as the white, background region, while the laryngeal tissue is the black, object region. 

The glottal area was computed as the total number of white pixels in a given frame: 
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White pixel Image(i,j)  =1⇒                       Black pixel Image(i,j)  =0⇒  
R C

i=1 j=1

  Area = Image(i,j)  Glottal ∑∑  

R and C are the number of rows and columns in a single frame. We collected local 

information on 30 consecutive frames. The ratio of the minimal and the maximal glottal areas 

during these 30 frames was recorded.  

Spatial Feature Calculation. Using glottal and threshold images, three spatial parameters 

were calculated. Once the threshold image was selected, the program calculated the number of 

separate regions within the glottis. This value, the threshold value, was recorded and used as the 

initial partition criteria in the classification phase.  

Next the previously saved glottal and threshold images were used to calculate a measure 

of symmetry. A reference line was drawn between the anterior and posterior ends of the glottal 

gap, such that it connected the furthest points of the glottal gap or in cases where one of the ends 

was defined by a straight edge; bisected this straight edge. The program calculated the area on 

either side of the reference line and produced an error value representing the difference in the 

two areas. Due to slight differences in image orientation we allowed the reference line to deviate 

10 degrees from the initial line constructed by the two end points, determining the minimal error 

value achieved within the rotation range (Figure 2). Finally, a measure of vocal fold concavity 

was calculated. Taking the threshold image, the program added to the glottal area until the edge 

was a smooth, concave curve. The measure of concavity was calculated as the total pixels added 

to the image, with samples more close to concave requiring less additional area. 

 

 

Figure 2: Threshold image with symmetry reference 

line. The program calculated the line such that it 

connected the two ends of the glottal gap with no more 

than a 10 degree deviation from horizontal to maximize 

the symmetry reading. 

 

Decision Tree Combined with Support Vector Machine.  SVM determines the maximum 

separation between two groups (Figure 3).
9,10 

 

 

 Figure 3: Visual representation of SVM. The 

dots represent two separable groups. The 

thick line between them is a hyperplane. The 

goal of SVM is to maximize the distance of 

the two groups from this hyperplane as 

represented by the arrows. 

 

 It differs from other classification algorithms because it provides a large margin of 

separation with relatively simple computations. In our SVM, data from each parameter was first 

fitted to a normal curve, such that -1≤X≤1, where a negative X value would suggest a more 

abnormal sample. Each sample was also labeled with a Y value of plus one if normal or negative 
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one if abnormal as classified by the attending physician. Using a training sample, we defined the 

separation hyperplane with slope “w” and y-intercept “b”. Both w and b were initially equal to 

zero. Each sample (xi,yi) was entered into the hyperplane function of yi(w*xi + b). If both the 

sample data and physician classification were in agreement, then the function generated a 

positive number and no adjustments were necessary. If the function returned a number less than 

zero, the following adjustments were made to the slope and y-intercept: w’ = w + yixi and b’ = b 

+ yi. This process was repeated until yi(w*xi + b) was greater than zero for all data, or in the case 

of outliers that could not be resolved, the program ran for a predetermined duration (1000 

integrations) before accepting the hyperplane as maximizing the margin shown in figure 3.
13

 The 

calculations can be summarized as follows: 

 ( ) 0     ' ,  '

( ) 0   

i i i i i

i i

if y w x b then w w y x b b y

untill y w x b for all i

⋅ + ≤ = + = +

⋅ + >

 

We used the SVM-light developed by Joachims which allows the parameters involved to 

be adjusted to address the trade-off between sensitivity and specificity.
14

. The preceding 

explanation reflects SVM with two parameters; the system can evaluate more parameters 

simultaneously using an increasing number of dimensions for the separation hyperplane and also 

“kernel tricks” to reduce the dimensions.
13

   

SVM only differentiates between two groups. Combining SVM with a decision tree 

overcomes this limitation. The decision tree is the most commonly used tool for classification in 

many fields.15 In our approach, SVMs were trained to separate classes at each level of the tree. 

After determining the differentiating capabilities of each parameter, we arranged the parameters 

into a decision tree to separate each pathology cases as shown in figure 4.  

 

 

Figure 4: Schematic of the decision 

tree used to classify individual 

samples. SVM was used at each 

node to separate groups. 

      

 

 

Statistical Analysis 

 A Mann Whitney rank sum test was employed to detect significant differences between 

normal and abnormal samples for each parameter. Next a one way ANOVA on ranks 

determined the ability of each parameter to differentiate between normal, nodule, polyp and 

leukoplakia groups. Samples were analyzed with a SVM based decision tree twice. First, the 

sensitivity and specificity were calculated for the separation of normal from abnormal samples. 
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Next the percent of samples correctly classified was calculated after data was divided into 

normal, nodule, polyp and leukoplakia groups. 

III. RESULTS 
Parameter Evaluation: Before combining all four parameters in the classification phase, 

we evaluated each parameter on the basis of its ability to differentiate normal from pathological 

samples. Shown in table 2 are the results of Mann Whitney rank sum tests for each parameter. 

Measures of threshold, glottal area ratio and concavity all were significantly different for normal 

and abnormal data (p=0.007, p=0.013 and p<0.001, respectively). Our symmetry parameter did 

not change significantly with pathology (p=0.294). 

Next we evaluated parameters for their ability to classify individual pathologies. The 

results of a one way ANOVA on ranks revealed significance in all four parameters. Using 

Dunn’s method for pairwise comparison, the threshold measure best differentiated polyps while 

glottal area ratio found more significant differences with nodules. Concavity was different for 

normal samples when compared to all three pathologies and the symmetry measure detected a 

difference between polyps and nodules (Table 2). 

SVM Based Decision Tree. Using a decision tree combined with SVM we correctly 

classified 89.1% of samples as either normal or abnormal. The specificity was 81.9%, while the 

sensitivity was 91.1%.  Table 3 is a confusion matrix reporting these results. Attempts to separate 

samples into specific disease classes yielded less compelling results. Normal and leukoplakia 

samples were classified best with accurate classification rates of 81.8% and 76.2%, respectively. 

Polyps were difficult to discern from nodules resulting in lower correct classification rates of 

64.9% and 61.9% respectively. In the nodule group 28.6% of samples were misclassified as 

polyps. Likewise, 24.3% of polyps were classified as nodules. Overall, samples were correctly 

classified 70.3% of the time. The confusion matrix for these results is shown in table 4. 

IV.  DISCUSSION 
In this study we were able to successfully apply a computer based classification system to 

HSV data. In separating normal from abnormal our system correctly identified 89.1% of samples. 

Especially promising is high sensitivity, missing only 8.9% of abnormal samples. Despite strong 

results in the detection of laryngeal pathology, our system struggled to differentiate specific 

conditions. Overall 70.3% of samples were correctly classified as normal, leukoplakia, nodule or 

polyp. Nodules and polyps were particularly hard to separate.  

Recently, much research has focused on the application of computer analysis to various 

forms of laryngeal imaging.1,6-8,16,17 Currently, studies by Verikas provide the most exciting 

results with accuracies as high as 94% when classifying normal, nodular and diffuse pathology 

groups.1,7,8. While our current investigation does not obtain results as strong as these studies, our 

research represents a novel investigation into the application of these technologies to HSV data. 

Despite its advantages over stroboscopy, HSV remains relatively uncommon in the clinical 

setting. We believe that computer systems for the analysis of HSV data are a necessary 

prerequisite for more widespread implementation. Our aim was to develop a program to be used 

with HSV for initial screening. Although not yet worthy of clinical implementation; this type of 

classification system has several clinical advantages. First, the measures detect physically 

observable parameters with specificity unobtainable by a subjective observer. Additionally, these 

parameters require minimal computer processing. In contrast, past research has focused on more 

sophisticated computer processing, requiring longer run times and more user training.
1,6-8

 In a 

clinical setting, a physician may quickly and easily utilize this type of program to generate 

immediate feedback. 
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We believe the goal of specific disease identification is not beyond the reach of this type 

of computerized classification. Using SVM and decision tree algorithms we can separate samples 

into groups defined by a disease specific combination of parameters. In our study, the parameters 

of threshold, concavity and the ratio of glottal area differentiated samples well; however, polyps 

and nodules produce similar values in these categories and thus were not distinguishable. As in 

past studies, our symmetry parameter struggled to produce consistent results.12 Tissue 

surrounding the vocal folds often appeared in the HSV image, obscuring the actual symmetry of 

the vocal folds, and a proper reference line was difficult to select. Further research could 

endeavor to determine a better way to quantify symmetry and to explore other parameters that 

may be valuable in disease classification. 

SVM has been used in several previous laryngeal-imaging studies and is a popular 

analysis tool in computer science and engineering.
18

 SVM analysis has a fast training and 

learning speed even when applied to relatively large sample sizes and may be used to evaluate 

many parameters at once.
15

 While SVM analysis can only separate samples into two groups; by 

using it at each level of decision tree structure, we can separate data into many more specific 

groups.
10,11

 Moreover, SVM combined with a decision tree can be used to combine individually 

weak parameters into a robust classification scheme.
11

 While our parameters were able to detect 

differences between specific groups, no one parameter was capable of adequately differentiating 

all four groups. By combining the parameters in a SVM based decision tree we were able to 

improve our classification results.  

Currently the classification of laryngeal images is limited by the image quality. Higher 

resolution images make glottal area detection both easier and more accurate. Moreover, measures 

of vocal fold texture require quality images. Past research has implicated color texture analysis 

as the most valuable single parameter extracted from vocal fold images.
1,6

 Physicians agree that 

the interpretation of color information contributes heavily to their assessment.
7
 Color imaging is 

a forthcoming development in HSV, which should greatly improve diagnostic potential.
2
 

V.  CONCLUSION 

In this paper, we address the need for an automated support system during the diagnosis 

of laryngeal pathologies. The concept of applying computerized categorization to HSV data is 

promising for future work. The use of a decision tree based method in combination with SVM 

also holds potential. Improvements in HSV image quality and segmentation are needed before a 

system can generate results strong enough for clinical implementation. Further research could 

focus on the differentiation of normal and pathological data, as well as the development of 

parameters to assist in the computerized identification of specific diseases. 
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Table 1: Summary statistics for human data used. 

Diagnosis Gender Ratio M:F Mean Age Total number 

Normal 3:8 45.86±11.62 22 

Nodules 1:20 40.52±9.65 21 

Polyps 18:19 45.86±11.28 37 

Leukoplakia 20:1 52.67±8.69 21 
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Table 2: Individual parameter evaluation. 

Parameter Mean Normal Mean Abnormal 
Mann Whitney 

Rank Sum 
ANOVA  

Significant 

Comparisons 

Threshold 1±0 1.4±0.54 p=0.007 p<0.001 
Polyps vs Normal 

Polyps vs Leukoplakia 

Glottal Area 

Ratio 
0.07±0.08 0.15±0.15 p=0.013 p<0.001 

Nodule vs Normal 

Nodule vs Leukoplakia 

Symmetry 1071.94±893.60 1428.16±1397.43 p=0.294 p=0.002 Nodule vs Polyp 

Concavity 165.86±82.99 708.32±514.50 p<0.001 p<0.001 

Polyp vs Normal 

Nodule vs Normal 

Leukoplakia vs Normal 
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 Table 3: Confusion matrix for normal vs abnormal classification results 

Classification Result 

 Normal Abnormal 

Normal 18 4 

 

Medical 

Classification 

Abnormal 7 72 
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 Table 4: Confusion matrix for individual pathology classification results. 

Classification Result 

 Normal Leukoplakia Nodule Polyp 

Normal 18 3 1 0 

Leukoplakia 3 16 1 1 

Nodule 1 1 13 6 

 

 

Medical 

Classification 

Polyp 1 3 9 24 
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FIGURES 
Figure 1: Glottal image and threshold image generated from a subject with vocal fold polyps 

before selecting a minimum pixel value. The glottal image is cropped to isolate the glottal 

opening. Laryngeal tissue appears black in the threshold image while the glottal opening is white. 

Additional areas of white indicate reflective interference. The lower panel is the version after 

applying a minimum value. 

 

Figure 2: Threshold image with symmetry reference line. The program calculated the line such 

that it connected the two ends of the glottal gap with no more than a 10 degree deviation from 

horizontal to maximize the symmetry reading. 

 

Figure 3: Visual representation of SVM. The dots represent two separable groups. The thick line 

between them is a hyperplane. The goal of SVM is to maximize the distance of the two groups 

from this hyperplane as represented by the arrows. 

 

Figure 4: Schematic of the decision tree used to classify individual samples. SVM was used at 

each node to separate groups. 


